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For stochastic magnetic flux functions with percolative contours the test particle transport is investigated.
The calculations make use of the stochastic Liouville approach. They start from the so-called A-Langevin
equations, including stochastic magnetic field components and binary collisions. Using the decorrelation tra-
jectory method, a relation between the Lagrangian velocity correlation function and the Eulerian magnetic field
correlation is derived and introduced into the Green-Kubo formalism. Finite Larmor radius effects are in-
cluded. Interesting results are presented in the percolation regime corresponding to high Kubo numbers.
Previous results are found to be limiting cases for small Kubo numbers. For different percolative scenarios the
diffusion is analyzed and strong influences of the percolative structures on the transport scaling are found. The
finite Larmor radius effects are discussed in detail. Numerical simulations of the A-Langevin equation confirm
the semianalytical predictions.
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I. INTRODUCTION

Particle and heat transport phenomena are of major inter-
est in several areas of modern physics. They appear with
great diversity, e.g., in plasma and astrophysics �1�. In the
basic concept of classical transport in magnetically confined
plasmas, a magnetic field preferentially binds the particles
along the field lines and reduces their ability to move in the
perpendicular direction of the field. It is convenient to define
test particle transport quantities, namely the mean square dis-
placement and the diffusion coefficient, and to distinguish
the transport in perpendicular and parallel directions. In the
classical picture, large magnetic guiding fields reduce the
perpendicular diffusion decisively. Collisions appear as an
obstacle for the free motion along the field lines, on the one
hand, and increase, on the other hand, the transport in the
perpendicular direction. The specific reason for the extraor-
dinary interest in the mechanisms of diffusion in stochastic
fields lies in the unexpected large losses caused by anoma-
lous transport �1�. The term anomalous refers to the strong
deviation of the diffusion rate from the classical and neoclas-
sical predictions �2�. Anomalous transport is caused by fluc-
tuations of electric and magnetic fields �3�. To understand
and control this type of transport is a major aim, e.g., with
regard to the future designs of thermonuclear fusion reactors.
Other important aspects are, e.g., the cosmic ray transport
and magnetic field complexity in interstellar space.

In the physics of fusion plasmas there is also an additional
motivation for the investigation of particle motion in sto-
chastic fields. Auxiliary coils are being added to existing
configurations to control transport in several tokamaks �4�.
These additional coils are new and dominating sources of
stochasticity. Examples can be found on the tokamaks Tore-
Supra, DIII-D, and TEXTOR, and are being planned for JET
and ASDEX-UPGRADE. The deterministic chaos of mag-
netic field lines produces a lot of important effects at the
plasma boundary �5–7�. New methods �8� have been devel-
oped for a fast statistical analysis of transport in stochastic
magnetic fields. Theories, e.g., Ref. �9�, explain electron and
positron runaway behaviors in stochastic fields.

Anomalous test particle transport theories start from sto-
chastic Liouville-type models �10,11�. The vast majority is
based on the V-Langevin equation in the guiding center limit.
In fusion devices, the mean magnetic fields are sufficiently
strong to support the small gyro-radii assumption over a
broad area, at least for the electrons. The question remains in
what way finite Larmor radii influence the transport, espe-
cially in regions where the guiding center assumption fails.
Indeed, in tokamaks such areas can be found, e.g., in the
vicinity of hyperbolic points. Our central intention is the de-
scription of these finite Larmor radius effects by analytical
and numerical means.

The magnetic turbulence and related charged particle
transport is also a long-standing problem in astrophysics.
The rate of separation of magnetic lines of force in a random
magnetic field was discussed �12,13�. Recently Ruffolo et al.
�14� considered the separation of magnetic field lines in two-
component turbulence. They showed that the separation of
magnetic field lines follows an exponential law �13� when
the slab component dominates the field line random walk.
Chuychai et al. �15� discussed the suppressed diffusive es-
cape of topologically trapped magnetic field lines. Particle
transport in astrophysical plasmas with magnetic turbulence
was investigated, e.g., by Qin et al. �16� who worked out
perpendicular transport of charged particles in composite
model turbulence. The basic investigations have many astro-
physical applications, e.g., Refs. �17–20�, explaining phe-
nomena such as low-energy cosmic ray penetration into the
heliosphere, the transport of galactic cosmic rays in and out
of the interstellar magnetic field, the trapping of solar ener-
getic particles by small scale topology, and the Fermi accel-
eration mechanism.

Galactic magnetic fields are parallel to the galactic disk
and mostly aligned with the galactic spiral arms �21�. The
typical Larmor radius of a cosmic ray particle in this field is
several orders smaller than the height of the galactic disk in
which most of the solar systems are located. In astrophysical
plasmas of these dimensions, collisions are neglected and
from the classical theory cosmic ray particles may be ex-
pected to remain very effectively trapped within the disk.
Observations do not agree with this picture. Cosmic rays are

PHYSICAL REVIEW E 74, 036401 �2006�

1539-3755/2006/74�3�/036401�10� ©2006 The American Physical Society036401-1

http://dx.doi.org/10.1103/PhysRevE.74.036401


transported in perpendicular direction at several magnitudes
higher than predicted by classical models. Obviously, a
model based on entirely parallel magnetic fields aligned with
the galactic arms is insufficient for a successful description
of the cosmic rays. With a mean field in the parallel direc-
tion, there have to be additional perpendicular components
that enable the particles to leave the galactic plasma. These
components are induced by nonlinearities of the galactic
field and can be regarded as stochastic. It is also an intention
of this work to provide useful predictions of the diffusion
that can be introduced into the models of cosmic rays. Mag-
netic fields occurring in the galaxy consist of small guiding
fields. Then it is required to include the complete gyrational
motion.

Another aspect of the transport in stochastic magnetic
fields concerns the structure of the perturbation field. Mag-
netic perturbations can be regarded to be generated from a
stochastic flux function. In some cases that are related to
Kubo numbers greater than 1 the flux function gets percola-
tive contours �22�. In such cases the field lines are forced to
move around the contour lines. This can lead to the very
interesting fact that a certain number of field lines is trapped
within the percolative map of the flux function and can no
longer contribute to transport. When field lines become
trapped within areas of the magnetic flux, the so-called flux
tubes �17�, the transport is changed significantly �23–29�.
The low-frequency percolation scaling for particle diffusion
in electrostatic turbulence has been discussed by Reuss and
Misguich �30�.

A method used in connection with percolative systems is
the decorrelation trajectory method �DCT�, developed by
Vlad et al. in Ref. �26�. In the present paper we apply the
DCT to the problem of test particle transport in systems with
finite Kubo numbers. The Kubo number is defined as the
ratio of the distance a particle travels during an
autocorrelation-time over the correlation distance. For small
Kubo numbers, the so-called Corrsin approximation �31�
turns out to be applicable. The central problem is the relation
between Lagrangian and Eulerian correlation functions
�32,33� for all Kubo numbers. To further develop the theory
in the percolation regime on the basis of stochastic differen-
tial equations, a consequent comparison between the Corrsin
approximation and the DCT is needed. It is a central inten-
tion of the present work to provide an analytical relation
between the Corrsin correlation functions and the DCT cor-
relation functions, as well as an in depth investigation of the
combined effects of percolation structures and finite Larmor
radii.

The paper is organized as follows. In Sec. II we introduce
the A-Langevin model and present the general formulation
for the velocity correlation function. The latter includes finite
Larmor radius effects. The Green-Kubo formalism is used to
derive a differential equation for the diffusion coefficient and
the mean-squared displacement �MSD�. Section III makes
use of the decorrelation trajectory method �DCT� to deter-
mine the Lagrangian correlation function. Equations for the
running diffusion coefficient are derived. Additionally, a re-
lation between the Corrsin approximation and the DCT is
discussed. Previous results within the Corrsin approximation
�32,34� turn out to be limiting cases of the more general
DCT treatment.

The main results of the present work are shown in Sec. IV.
The influence of finite Larmor radii is pointed out for a broad
range of Kubo numbers and different states of collisionality.
The existence of a regime with decisively higher transport
than in common guiding center theories is demonstrated. The
results are verified by numerical simulations for the
A-Langevin equation.

The work is concluded by a short summary and discus-
sion in Sec. V. Details of our calculations are placed into
three appendixes.

II. A-LANGEVIN APPROACH

We start with a magnetic field of the form B=B0�b0ez
+bxex+byey+bzez�, composed of a guiding field B0b0 in the z
direction �parallel component� and perturbations in x, y �per-
pendicular components�, and z directions. The factor B0 takes
care of the dimension of the magnetic field. With the as-
sumption of two-dimensional perturbations, we restrict our
investigation to situations corresponding to relatively strong
guiding fields, that means for any parallel perturbation bz we
assume that �b0�� �bz�,�bx�,�by�. Under such circumstances the
influence of bz can be neglected. We define the gyro-
frequency unit �=ZeB0 /mc, where m is the test particle
�electron or ion� mass and Ze is the test particle charge. Note
that with this definition the typical Larmor frequency is
given by �L=�b0. The Larmor radius is defined as �L
=vth / ��b0+���, where the thermal velocity vth and the rela-
tive strength � of the magnetic perturbations have been in-
troduced.

The A-Langevin equation is the equation of motion for a
test particle experiencing the effect of the magnetic field �in-
cluding its stochastic contribution� and random collisions
�through a�. A friction parameter � models the average effect
of these collisions,

d

dt
u =

Ze

mc
u � B − �u + a . �1�

Integration of u�t� leads to the trajectory of the particle,
R�t�=�0

t u�t��dt�. We apply a white noise correlation spec-
trum for the collisions, with �a�=0 and �ai�t1�aj�t2��
=A�ij��t1− t2�.

It has already been shown in Ref. �34� that an explicit
solution of Eq. �1� can be written in terms of �,

����t + 	����t��� =
vth

2

2
exp�− �	�cos��b0	� , �2�

�
	�t + 	�
	�t��	 =
vth

2

2
exp�− �	� . �3�

The velocity � is the solution without a stochastic magnetic
field corresponding to the classical transport situation.

The transport of test particles can be deduced from the
velocity correlation function. Once the Lagrangian velocity
correlation is known, the mean square displacement �MSD�
and the diffusion coefficient are typically obtained from the
Green-Kubo formula
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d2

dt2 ��ri
2� = 2

d

dt
D�t� = �Š�ui�t1�ui�t2��b‹��	 , i = x,y,z .

�4�

The Green-Kubo formula connects the MSD, respectively
the running diffusion coefficient D�t�, with the velocity cor-
relation function. It should be solved with the initial condi-
tions D�0�=0 and ��ri

2�0��=0. The perpendicular velocity
correlation has been discussed in Ref. �34�. We call the con-
tribution from the magnetic perturbation terms the anoma-
lous contribution, thereby distinguishing between classical
transport and the anomalous transport,

ux�t1�ux�t2� = �
x�t1�
x�t2��CL + �ux�t1�ux�t2��AN. �5�

The velocity correlation functions still require averaging
with respect to the stochastic variables. A rigorous perturba-
tion theory for strong guiding fields leads to

�ux�t1�ux�t2��b,�,	
AN 
 L�0� + L�1�, �6�

with the correlation functions

L�0� =
1

b0
2 �
z�t1�
z�t2���by�x�t1��by�x�t2���b���	 , �7�

L�1� =
�L

2

vt
2b0

2Š
z�t1�
z�t2���by��x�t1��by��x�t2���b��‹	 . �8�

We refer to L�0� as the guiding center limit. It represents the
zeroth order of the perturbation theory. L�1� is the first order
and contains the effects of finite Larmor radii, as can be seen
from the right-hand side of Eq. �8�.

A central question concerns the averages of magnetic field
components. The magnetic correlation is given in Eulerian
coordinates and has thus to be transformed to Lagrangian
coordinates. Such a problem exists in practically all applica-
tions of turbulence and transport theory �33�. Typically, an
approximation due to Corrsin �31� is applied which provides
a straightforward estimation for the Lagrangian correlation
function. Unfortunately, this rather simple technique goes
along with a strong restriction on the stochastic regime de-
fined in terms of the dimensionless magnetic Kubo number
�=

��	

b0��
. Here we introduced the perpendicular and parallel

correlation lengths �� and �	. When using the Corrsin ap-
proximation �34� we found very good agreement of our
model equations with simulations of the system �1� for small
Kubo numbers. Our intention is now to extend the model to
the complete range of Kubo numbers. An alternative method
has to be applied in order to cover a broader range of Kubo
numbers. The investigation will include the Corrsin approxi-
mated results as a limiting case for small Kubo numbers.

III. DCT METHOD

In a series of papers Vlad and co-workers �26–29� devel-
oped a new procedure for the Lagrangian correlation func-
tions, called the decorrelation trajectory method. It was de-
signed for large Kubo numbers and can be regarded as a
substitute for the Corrsin approximation. The method has

been used within the guiding center approximation �when the
so-called V-Langevin equation applies�. Here, we shall adapt
the DCT to the more general problem of the correlation func-
tions of the A-Langevin equation. The perturbation field b is
assumed to have only a two-dimensional structure. This con-
dition is fulfilled for finite but small Larmor radii. The sto-
chastic field b is generated by the scalar magnetic potential

�x ,z�,

b�x,z� = �
�x,z� � ez, �9�

which we will call the flux function. The stochastic proper-
ties of this function are presented in Appendix A. The vector
x= �x ,y� refers to the perpendicular coordinates, whereas z
can be regarded as the parallel coordinate. Magnetic field
lines follow from the flux function by the relation dx /dz
=b. Within the DCT formulation we have

LDCT
�0� =

1

b0
2�

−�

�

P�
0�P�b0�P�
0�
0by
0

� Š�
z�t�by�x�t�,z�t�,t��S‹�d
z
0db0d
0, �10�

and

LDCT
�1� =� �L

2

vt
2b0

2�
−�

�

P�
x
0�P�
y

0�P�
z
0�P�b�0�P�
0�

� 
0by�
0�
z�t�by��x�t�,z�t�,t��S

� d
x
0d
y

0d
z
0db�0d
0


�

. �11�

Equations �10� and �11� are still exact since so far no ap-
proximation has been applied. Next, we assume Gaussian
probabilities P�x�. We do not know the trajectory r= �x ,z�.
But the subensemble decomposition leads to a significant
advantage: For each subensemble the values of 
0, 
0, and
b0 are fixed. Within the DCT subensemble we can determine
each trajectory for a mean field �b�x ,z��S by solving the
A-Langevin equation. The crucial simplification of that tech-
nique is that all contributions from the magnetic field are
now nonstochastic values. The fictitious trajectory, along
which a particle would travel if it is introduced into the sub-
ensemble magnetic mean field, is called the decorrelation
trajectory.

The major approximation of the DCT �26� allowing the
transition from the Eulerian to the Lagrangian expression, is
to evaluate the formulas �10� or �11� by substituting for the
unknown trajectory x�t� the decorrelation trajectory. This tra-
jectory is introduced into the expression for the averaged
field �b�x=X ,z��S. With the trajectory X�t� given by the
A-Langevin equation, Eqs. �10� and �11� determine the La-
grangian velocity correlator. The first task is then to find the
average �b�x ,z��S in each subensemble defined by b0 and 
0.
Additionally, we need expressions for the averages occurring
in the DCT equations.

The decorrelation trajectory itself is given by an
A-Langevin equation
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Ẍ�t� = U̇�t�

=
Ze

mc
U�t��B0�b0ez + �b�X,z��S�� − �U�t� + a�t� ,

�12�

containing the nonstochastic subensemble average �b�x ,z��S.
The collisions a are still stochastic entries. Each suben-
semble produces an averaged b field. One can calculate this
average by using the conditional probability to find �within
the subensemble defined by 
0 and b0� a field b at the posi-
tion x,

�b�x,z��S = �
−�

�

dbbP�b,x�
0b0� , �13�

where one uses

P�b,x�
0b0� =
��„b − b�x,z,t�…�„
0 − 
�0�…�„b0 − b�0�…�S

��„
0 − 
�0�…�„b0 − b�0�…�S
.

�14�

With the conditional probability we immediately find

�b�x,y��S = �bx
0Exx + by

0Exy + 
0E
x

bx
0Eyx + by

0Eyy + 
0E
y
�

=�−
�2

��
2 �y��

2 
0 + �y2 − ��
2 �bx

0 − xyby
0�e−��x,z�

�2

��
2 �x��

2 
0 + xybx
0 + ���

2 − x2�by
0�e−��x,z� � .

�15�

We split the y component into x and z dependencies defining

�2

��
2 �x��

2 
0 + xybx
0 + ���

2 − x2�by
0�e−��x,0�e−��0,z�


 F��x�F	�z� . �16�

In the analysis of the DCT terms, we will only need the y
component of �b�x ,y��S.

Summarizing, we can derive a subensemble decomposi-
tion of the Eulerian correlation function for both the mag-
netic field and for the velocity of a particle, depending on the
averaged b field in each subensemble. The average,
�b�x ,y��S, is given as a function of x and z.

A similar result is obtained for the averaged derivative in
the subensemble,

�b��x,y��S = �bx�
0Ēx�x� + by�

0Ēx�y�

bx�
0Ēy�x� + by�

0Ēy�y�

� . �17�

Note that the 
0 part vanishes.
Using the definitions of the derivative correlations of Ap-

pendix A we immediately find for the x component

�bx��x,y��S = �T1�x�
x
0
x�t� + T2�x�
y

0
y�t�

+ T3�x�
z
0
z�t��e−z2/2�	

2
, �18�

with the abbreviations

T1�x,��� = � x2y2�2bx�
0

��
6 −

x2�2bx�
0

��
4 −

y2�2bx�
0

��
4 +

�2bx�
0

��
2

−
x3y�2by�

0

��
6 +

3xy�2by�
0

��
4 �e−x2/2��

2 −y2/2��
2

, �19�

T2�x,��� = � y4�2bx�
0

��
6 −

6y2�2bx�
0

��
4 +

3�2bx�
0

��
2 −

xy3�2by�
0

��
6

+
3xy�2by�

0

��
4 �e−x2/2��

2 −y2/2��
2

, �20�

T3�x,��� = ��2bx�
0

�	
2 −

z2�2bx�
0

�	
4 −

y2�2bx�
0

�	
2��

2 +
y2z2�2bx�

0

�	
4��

2

+
xy�2by�

0

�	
2��

2 −
xyz2�2by�

0

�	
4��

2 �e−x2/2��
2 −y2/2��

2
. �21�

The Kubo number enters the Lagrangian correlation func-
tion implicitly through the DCT. The solution of Eq. �12�
may show trapping. Depending on the autocorrelation time,
the total distance traveled during the autocorrelation time
may become large compared to the �perpendicular� correla-
tion length. That situation corresponds to large Kubo num-
bers.

A. Zeroth order Lagrangian correlation function

We use the coordinate transformation �32� x�t�→x�t�+�
and define �= ��x ,�y� being responsible for all perpendicular
deviations from the trajectory. With this definition an arbi-
trary Eulerian correlation function E can be calculated by

�E�x,z��� = �
−�

�

E�x + �x�����x − �x�t����d�x. �22�

This formulation is similar to the relation derived within the
Corrsin approximation. Using the Fourier representation of
the � function we can easily find

P��x� 
 ����x − �x�t���� =
1

�2���2�t��
exp�−

�x
2

2��2�t���

� ,

�23�

i.e., a Gaussian distribution in �x which we will denote with
the symbol P��x�. Because of symmetry reasons we have
also ��x

2�= ��y
2�
��2�t��. For the zeroth order we can apply

the average at the very beginning of the calculation, namely
on the Eulerian correlator,

�A�x,z;�����

= �
−�

� �
−�

�

�2��
2 exp�−

�x + �x�2 + �y + �y�2

2��
2 −

z2

2�	
2�

� P��x�P��y�d�xd�y , �24�
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leading the averaged Eulerian correlation in the form

�A�x,z;����� = NA�x,z;�� + ��2�t��� , �25�

where

N = �1 +
�2�t�
��

2 �−1

. �26�

This finally leads to

Z 
 �Š�
	�t�by�x�t�,z�t�,t��S‹	��

= NF��x;�� + ��2�t����
−�

�

F	�z�M	�z�dz . �27�

Note the appearance of the Corrsin term N, which does not
depend on the DCT. Within this picture the decorrelation
trajectory itself appears only in the perpendicular coordinates
x and y. The definition of M	 is given in Appendix B. The
further integration can also be performed directly; it is later
not affected by any assumption on the trajectory. The z inte-
gration can be carried out, using the expression for M	�z�,

Z = F��x,�� + ��2�t���

� N�
0M�	�e−�t −

0�	

2�1 − �	�e−�t�
�	

2 M3�
� e−��z�t��S

2/2�	
2�M2

. �28�

This average can now be introduced into the DCT integra-
tions, yielding the result

LDCT
�0� = S0�t�NM��	�e−�t + M2��	�e−�t − 1�

�	
2

�	
2� .

We introduced a function S0�t� which contains the informa-
tion on the percolation map,

S0�t� =
1

�1 + M2�2/�	
2�3/2�

−�

� �
−�

� �
−�

�

by
0F��X;�� + ��2�t���

� P�b,
�dbx
0dby

0d
0. �29�

Although the function S0�t� is quite complicated, and
therefore typically evaluated numerically, we can still find
interesting analytical properties: lim��→� S0�t�=1 as well as
lim��→0 S0�t�=0. This can be checked easily by inserting
Eq. �16� into Eq. �29�. An obvious connection between both
methods, the DCT and the Corrsin approximation, can be
identified by

lim
�→0

LDCT
�0� = LCorrsin

�0� , �30�

where LCorrsin
�0� corresponds to the results �34� for the

A-Langevin equation within the Corrsin approximation. The
latter was restricted to small Kubo numbers and is recovered
here in a more general context.

As stated already, the validity of the Corrsin approxima-
tion is restricted to small Kubo numbers. Evaluations of
many simulations showed that ��0.1 can be considered as
the regime where the Corrsin approximation leads to quali-
tatively correct, and quantitatively acceptable, results.

B. First order Lagrangian correlation function

The evaluation of the first order correction term �8� within
the DCT subensembles �11� is significantly more involved,
but in principle similar to the previous case. We have

LDCT
�1� =

�L
2

vt
2b0

2��
−�

�

P�
x
0�P�
y

0�P�
z
0�P�b�0�P�
0�

� 
z
0bx�

0�
−�

�

�T1�x,���
x
0
x�t�

+ T2�x,���
y
0
y�t��e−z2/2�	

2
M	�z�dz

+ �bx�
0T3�x,���
z

02
z
2�t�e−z2/2�	

2
�	


�

� d
x
0d
y

0d
z
0db�0d
0. �31�

The functions Ti contain coupled averages with respect to the
perpendicular motion. Following the method outlined above,
we use the function M��z� given in Appendix B. The inte-
grals presented in Appendix C finally yield

LDCT
�1� = −

�L
2�2L��→�

�0�

vt
2b0

2 �C��t��S1a�t� + 3S2a�t��

�1 + ��2�/��
2 �5��

2

−
3��

2 �1 − C��t��S1b�t�

��
4 �1 + ��2�/��

2 �5/2�1 + ���2� + ��
2 �/��

2 �3/2

−
15��

2 �1 − C��t��S2b�x�

��
4 �1 + ��2�/��

2 �3/2�1 + ���2� + ��
2 �/��

2 �5/2�
−

�L
2�2vt

2

b0
2

�
S3�x�

�	
4�1 + �	/�	

2�1 + �	
2/�1 + �	/�	

2��1 + ��2�/��
2 �3

.

�32�

The functions Si are given by

Si =� Tidb�0d
0 �33�

with the T terms shown in Appendix C. We want to empha-
size that lim��→� Si�t�=1 and lim��→0 Si�t�=0 show the
same behavior as in the zeroth order. We have �again� the
important relation

lim
�→0

LDCT
�1� = LCorrsin

�1� , �34�

verifying the previous result �34� for small Kubo numbers.

IV. RESULTS

In the following we concentrate on the effects caused by
large Kubo numbers. Large Kubo numbers correspond to
percolative structures of the flux function ��x ,z�. We will
also emphasize finite Larmor radius effects. The conclusions
will be drawn from the �numerical� solution of the equation
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d2

dt2 ��x2� = 2
d

dt
D��t� = LDCT

�0� + LDCT
�1� . �35�

The numerical calculation of the DCT structure functions
requires an efficient and fast way to solve the integrals for,
e.g., �0 and b0. This is a nontrivial task, because for each
integration step the decorrelation trajectory has to be recal-
culated by an additional integration of the nonstochastic
three-dimensional Lorentz differential equation system. To
perform this task, we use a Monte Carlo integration algo-
rithm which chooses random values for the variable
��0 ,b0 , . . . � and selects only those with a maximal contribu-
tion to the integral.

In Fig. 1 we present the running diffusion coefficient, nor-
malized to the quasilinear coefficient DQL=vth

�2

b0
2 �	, in the

collisionless case as a function of the time t �in units 1 /��
for two values of the Kubo number. Here, and in the follow-
ing, the Kubo number is varied by changing ��, keeping �	

as well as � fixed. Thus DQL is constant during the variation
and can be used as a proper normalization constant. The
guiding center result, that is, the calculation with the zeroth
order term L�0� alone, is compared with the complete integra-
tion of Eq. �35�. The latter contains finite Larmor radius in-
fluences. It can be seen that for a larger Kubo number a
smaller diffusion rate occurs. Additionally, and probably
even more important: In this situation the finite Larmor ra-
dius terms lead to higher transport than predicted by the
guiding center theory. Obviously guiding center theories un-
derestimate in such cases the diffusion significantly.

Next, we investigate a collisional situation to analyze in
what way collisions may compensate the just mentioned am-
plification effect. Figure 2 shows again the normalized run-
ning diffusion coefficient, but now with collisions given by
the reduced collisional frequency � /�=0.2. Note that the
Kubo numbers are larger than in Fig. 1. The guiding center
prediction is again exceeded by the exact results, for large
Kubo numbers. The qualitative result of an amplification of
transport at large Kubo numbers is, in principle, not changed
by the collisions. Extreme high collisionalities, however,

may remove any influence of the structure and the typical
Corrsin results are recovered. For a fixed value of � /� a
certain Kubo number can be found beyond which diffusion is
amplified by the Larmor radius effects.

The functional dependence between diffusion and Kubo
number is presented in Fig. 3 for the collisionless case. The
effect of the finite Larmor radii is shown. For large Kubo
numbers, an increase of the diffusion occurs due to the Lar-
mor radius effects. The Larmor radius corrections lead to a
significant amplification of the diffusion for very high Kubo
numbers. A maximum between �=100 and �=1000 occurs.
Of course, in the limit �→� both rates, the guiding center
diffusion and the exact result, decay to zero.

In Fig. 4 we present a typical collisional situation. Two
values of the reduced collisional frequency � /� are used.
The effect of the increased diffusion for finite Larmor radii
prevails.

In order to independently verify our results, we used a
Monte Carlo algorithm to simulate the original A-Langevin
equation. Figure 5 shows a typical numerical result. The

FIG. 1. Solution of Eq. �35�. The normalized �by DQL� running
diffusion coefficient D�t� is presented in the collisionless case for
two different Kubo numbers, �=2.5 and �=3.6, respectively. A
comparison with the predictions of the guiding center theory is
shown. The time appears in units of 1 /�, and the stochastic values
are �	 =25�L and � /b0=0.1.

FIG. 2. Same as Fig. 1, but now for a collisional case with
� /�=0.2. Note that the Kubo numbers, �=4.2 and �=6.25, respec-
tively, are larger than in Fig. 1; the other parameters are unchanged.

FIG. 3. Normalized diffusion coefficient vs Kubo number,
showing amplification caused by finite Larmor radii, for a collision-
less situation �� /�=0�. The parameters are � /b0=0.1, �L=2 mea-
sured in units of vt / ��b0�. The guiding center diffusion was also
calculated within the DCT.
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mean square displacement is shown as a function of time.
The Kubo number is relatively high ��=125�; collisions are
present. When compared to the predictions of the present
theory, the agreement is excellent. Guiding center theory un-
derestimates, for the chosen parameters, the diffusion.

V. SUMMARY AND DISCUSSION

In the present paper, for magnetic flux functions with per-
colative contours the test particle transport was investigated.
The calculations started from the so-called A-Langevin equa-
tions, including stochastic magnetic field components and
binary collisions. Using the decorrelation trajectory method
�DCT�, a relation between the Lagrangian velocity correla-
tion function and the Eulerian magnetic field correlation was
derived. There is no restriction on the Kubo number, com-

pared to the Corrsin approximation. Within the Green-Kubo
formalism a semianalytical expression for the particle diffu-
sion coefficient was obtained from the Lagrangian velocity
correlation function. Finite Larmor radius effects were in-
cluded. New results for the percolation regime �correspond-
ing to high Kubo numbers� show a significant increase of the
transport due to finite Larmor radii. Previous results are
found to be limiting cases for small Kubo numbers. An im-
portant relation between the decorrelation trajectory method
and the Corrsin approximation was found. For different per-
colative scenarios and collisionalities the diffusion was ana-
lyzed, and strong influences of the percolative structures on
the transport scaling were found. Direct numerical simula-
tions of the A-Langevin equation confirmed the semianalyti-
cal predictions.

The general tendency can be understood as follows. We
use the analogy �14,23�: 
 is considered to be a landscape
composed of hills and wells. The actual value of 
, 
0 can
be compared to the level of water filled in this landscape. If
we start in the maximum of 
, where the landscape is com-
pletely flooded and decrease the water level 
0, the number
of hills increases together with their sizes. At certain levels
the coalescence of different hills is observed, because 
0

passes the hyperbolic points of the percolation map. When-
ever such a coalescence takes place, the area and the contour
line of the hill suddenly increase, and with it the area along
which a field line is allowed to travel. High Kubo numbers
represent 
 regimes with distinct extremas, hence many
hills. The particle diffusion is essentially reduced because a
certain number of particles remain in trapped states with
their field lines. Such a particle contributes to the diffusion
process again, if it is dislocated to a lower 
0 value by a
collision. Higher collisionality therefore reduces the trapping
effect. In a similar way, finite Larmor radii work against
trapping. On the other hand, a situation with less hills or
many united hills, i.e., a smooth landscape, is realized for
small Kubo numbers. In such regimes trapping does not play
an important role and can be neglected.
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APPENDIX A: STOCHASTIC PROPERTIES OF THE
FLUX FUNCTION

The flux function is a stochastic object. Its Eulerian cor-
relation function is defined as

A�x,z� = �
�0,0�
�x,z�� = �2��
2 exp�− ��x,z�� . �A1�

We assume a Gaussian with

��x,z� 

x2 + y2

2��
2 +

z2

2�	
2 . �A2�

In the main part, we derived the Lagrangian correlator from
the Eulerian correlator of the b field. The latter can be recov-
ered from the present formulation via

FIG. 4. Normalized diffusion coefficient vs Kubo number for
two collisional situations with � /�=0.3 and � /�=0.15, respec-
tively. The dashed lines depict the corresponding guiding center
results. The parameter values are �	 =25�L and � /b0=0.5.

FIG. 5. Monte Carlo simulation of the mean square displace-
ment for a high Kubo number, including collisions and large values
of �L, as a function of time t. The parameters are �=125, � /�
=0.2, � /b0=0.5, �	 =50�L, and ��=0.2�L. Straight lines indicate
the analytical predictions for the DCT with Larmor radius correc-
tions and the guiding center limit �also calculated with the DCT�,
respectively.

DIFFUSION OF TEST PARTICLES IN STOCHASTIC¼ PHYSICAL REVIEW E 74, 036401 �2006�

036401-7



E = �b�0� � b�x�� = ��� � 
ez� � �� � 
ez��

= �− �yyA �yxA

�xyA − �xxA
� 
 �Exx Exy

Eyx Eyy
� . �A3�

The off-diagonal elements are the cross correlations. They
are given by

Ex
 = − E
x = �yA, Ey
 = − E
x = − �xA . �A4�

Correlations of the derivatives with respect to the time t
are given by

Ēii = �bi��t1�bi��t2�� =
d2

dt1dt2
�bx�t1�bx�t2�� = �− �yyĀ �yxĀ

�xyĀ − �xxĀ
� ,

�A5�

where we have defined

Ā = � d2

dt1dt2
A„x�t1� − x�t2�,z�t1� − z�t2�…�

t1=t,t2=0

= ���2 −
x2�2

��
2 �
x

0
x�t� + ��2 −
y2�2

��
2 �
y

0
y�t�

+ ��2��
2

�	
2 −

z2�2��
2

�	
4 �
z

0
z�t��exp�− ��x,z�� . �A6�

With the prescription �A6� the correlation functions can
be obtained from Eq. �A5�. All cross correlations of the type

x
y are neglected since they vanish when the correlators are
averaged. The same reason causes E
b�= �
�0�bx��t��=0 be-
cause only single 
i elements appear.

APPENDIX B: COUPLED AVERAGE PROBABILITIES

Here we focus on the combined averages needed in the
DCT equations. The subensemble averages are obtained by
accounting for the conditional averages in the following
way:

Š�
	�t�b�x�t�,z�t�,t��S‹�

= �
−�

� �
−�

� �
−�

� �
z�t��„z − z�t�…�„
z
0 − 
z�0�…�	

P�
0�

�
1

��„
0 − 
�0�…�„b0 − b�0�…�S

� ���„b − b�x + �,z,t�…�„
0 − 
�0�…�„b0 − b�0�…�S

� �„�x − �x�t�…�„�y − �y�t�…����„
0 − 
�0�…

� �„b0 − b�0�…�Sd�xd�ydz , �B1�

and

Š�
	�t�b��x�t�,z�t�,t��S‹�

= �
−�

� �
−�

� �
−�

� �
z�t��„z − z�t�…�„
z
0 − 
z�0�…�	

P�
0�

�
1

��„b0 − b�0�…�S

� ���„b� − b��x + �,z,t�…�„b�0 − b�0�…�S

� �„�x − �x�t�…�„�y − �y�t�…��d�xd�ydz . �B2�

The averaging is performed as follows: �i� The first condi-
tional average term in both expressions depend on 
z. They
take the parallel motion into account. The latter appears
within the b field as well as in the velocity correlator itself.
Here, we are not allowed to make a stochastic independence
assumption for these terms, as is being done in the Corrsin
approximation. �ii� Perpendicular averaging is performed by
applying two � functions for �x and �y. Unfortunately the
procedure becomes more complicated for the average with
derivative terms. Because of the 
x and 
y product terms we
need the same procedure as for the parallel motion.

Next, we determine the conditional average for the paral-
lel motion,

M	�z� 

�
z�t��„z − z�t�…�„
z

0 − 
z�0�…�	

��„
z
0 − 
z�0�…�	

. �B3�

The Fourier representation of the � functions helps to rewrite
the stochastic data in the form of exponential functions and
leads to the integrations,

M	�z� =
1

2�P�
0� � � exp�− ikz − iq
z
0�

� �
z�t�exp�ikz�t� + iq
z�0���	dkdq . �B4�

To simplify the last expression, we define the function

�H	�	 
 �exp�a
z�t� + ikz�t� + iq
z�0���	 , �B5�

which is related to the unknown average by

�
z�t�exp�ikz�t� + iq
z�0���	 = �� �

�a
H


	
�

a=0
. �B6�

In this form, the parallel average is applied to H by the
standard cumulant expansion,

�H	�	 = exp�−
a2

2
�
z�t�
z�t��	 −

k2

2
�z2�t��	 −

q2

2
�
z�0�
z�0��	

+ iaq�
z�0�
z�t��	 − kq�z�t�
z�0��	 + iak�z�t�
z�t��	� .

�B7�

Here, the well-known stochastic properties of 
z can be used,

�
z�t�
z�t��	 = �
z�0�
z�0��	 = 1,

�
z�t1�
z�t2��	 = �	�e−��t1−t2� 
 C	�t� ,

�z�t�
z�t��	 = �z�t�
z�0��	 = �	�t� ,

�z2�t��	 = �	�t� . �B8�

The average H	 simplifies to
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�H	�	 = exp�−
a2

2
−

k2

2
�	�t� −

q2

2
+ iaqC	�t�

− kq�	�t� + iak�	�t�� , �B9�

and the derivative at a=0 is

�

�a
�H	�	a=0 = �iqC	�t� + ik�	�t��

� exp�−
q2

2
−

k2

2
�	�t� − kq�	�t�� .

�B10�

To find M	, we use the definition of H	 in the expression for
M	:

M	�z� =
1

2�P�
0� � � �iqC	�t� + ik�	�t��exp�−
q2

2
−

k2

2
�	�t�

− kq�	�t��exp�− ikz − iq
z
0�dkdq . �B11�

Performing the integration over q leads to

M	�z� =
1

�2�P�
z
0�
� �
z

0C	�t� − ik�R − 1��	�t��

� exp�−
1

2
�
z

0 − ik�	�t��2 − ikz −
k2

2
�	�t��dk .

�B12�

Finally, the integration over k yields

M	�z� = � 
z
0C	�t�

��	�t� − �	
2�t��1/2 +

�	�t��1 − C	�t���z − 
z
0�	�t��

��	�t� − �	
2�t��3/2 �

� exp�
z
02

2
−

z2 + �	�t�
z
02 − 2z
z

2�	�t�
2��	�t� − �	

2�t��
� , �B13�

and after some algebraic manipulations we find

M	�z� = � 
z
0C	�t�

��	�t� − �	
2�t��1/2 +

�	�t��1 − C	�t���z − 
z
0�	�t��

��	�t� − �	
2�t��3/2 �

� exp�−
�z − 
z

0�	�t��2

2��	�t� − �	
2�t��

� . �B14�

The last result can be expressed in terms of a probability
distribution P�z�,

M	�z� = �
z
0C	�t� −


z
0�	

2�t�
��	�t� − �	

2�t��
�1 − C	�t�

�

�z
��P	�z� ,

�B15�

using the subensemble average of the position �z�t��
=
z

0���t� and

P�z� =
1

�2���	�t� − �	
2�t��

exp�−
�z − �z�t��S�2

2��	�t� − �	
2�t��

� .

�B16�

Such an expression can also be found in Ref. �28� derived for
a DCT approximation within the context of the V-Langevin
equations.

The conditional average of the perpendicular motion is
found analogously,

M���x� 

�
x�t��„�x − �x�t�…�„
x

0 − 
x�0�…��

��„
x
0 − 
x�0�…�	

. �B17�

Due to the symmetry the same arguments hold for M���y�.
Designating

�
x�t�
x�t��� = �
x�0�
x�0��� = 1,

�
x�t1�
x�t2��� = ���e−��t1−t2� 
 C��t� , �B18�

and using the data from the classical transport,

��x�t�
x�t��� = ��x�t�
x�0��� = ���t� , �B19�

we find

M���x� = �
x
0C��t� − ���t��1 − C��t��

d

d�x
�P���x� .

�B20�

APPENDIX C: THE Ti FUNCTIONS AND THE
STRUCTURE INTEGRALS Si

The Ti terms can be calculated analytically. The results of
the integration are the following:

T1a�x� =
1

�1 + ��2�/��
2 �3��

4

�����
2 + ��2� − x2����

2 + ��2� − y2�bx�
0

+ xy�3��
2 + 3��2� − x2�by�

0�

�exp�−
x2 + y2

2���2� + ��
2 �
� , �C1�

T1b�x� =
1

3�1 + ���2� + ��
2 �/��

2 �4��
8 ����2� − y2 + ��

2 �

�bx�
0���2� + ��

2 + ��
2 ��3��2�2 − 6��2�x2 + x4

+ 6���2� − x2���
2 + 3��

4 + 6���2� − x2 + ��
2 ���

2

+ 3��
4 � + xy���2� + ��

2 �

�by�
0�15��2�2 + x4 − 10x2��

2 + 15��
4 − 10��2�

��x2 − 3��
2 � + 5��

2 �6��2� − 2x2 + 6��
2 + 3��

2 ���

� exp�−
x2

2���2� + ��
2 + ��

2 �
−

y2

2���2� + ��
2 �� .

�C2�
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T2a�x� =
1

3�1 + ��2�/��
2 �2��

4 ��3��2�2 + y4 − 6y2��
2 + 3��

4

− 6��2��y2 − ��
2 ��bx�

0 + xy�3��2� − y2 + 3��
2 �by�

0�

� exp�−
x2 + y2

2���2� + ��
2 �
� , �C3�

T2b�x� = −
1

15�1 + ���2� + ��
2 �/��

2 �4��
8

�„− xyby�
0���2� + ��

2 + ��
2 �

��15��2�2 + y4 − 10y2��
2 + 15��

4 − 10��2��y2 − 3��
2 �

+ 5��
2 �6��2� − 2y2 + 6��

2 + 3��
2 ��

− ���2� + ��
2 �bx�

0�15��2�3 − 45��2�2y2 + 15��2�y4 − y6

+ 15�3��2�2 − 6��2�y2 + y4���
2 + 45���2� − y2���

4

+ 15��
6 + 15��

2 �3��2�2 − 6��2�y2

+ y4 + 6���2� − y2���
2 + 3��

4

+ 3���2� − y2 + ��
2 ���

2 + ��
4 ��…

� exp�−
x2

2���2� + ��
2 �

−
y2

2���2� + ��
2 + ��

2 �� , �C4�

T3�x� =
1

��
2 ���z2� − y2 + ��

2 �bx�
0 + xyby�

0�

� exp�−
x2 + y2

2���2� + ��
2 �
� . �C5�
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